Granger Causality Analysis in Neuroscience and Neuroimaging

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Granger causality analysis in neuroscience and neuroimaging.

Introduction A key challenge in neuroscience and, in particular, neuroimaging, is to move beyond identification of regional activations toward the characterization of functional circuits underpinning perception, cognition, behavior, and consciousness. Granger causality (G-causality) analysis provides a powerful method for achieving this, by identifying directed functional (“causal”) interaction...

متن کامل

Granger Causality: Basic Theory and Application to Neuroscience

Multi-electrode neurophysiological recordings produce massive quantities of data. Multivariate time series analysis provides the basic framework for analyzing the patterns of neural interactions in these data. It has long been recognized that neural interactions are directional. Being able to assess the directionality of neuronal interactions is thus a highly desired capability for understandin...

متن کامل

Fiber-centered Granger Causality Analysis

Granger causality analysis (GCA) has been well-established in the brain imaging field. However, the structural underpinnings and functional dynamics of Granger causality remain unclear. In this paper, we present fibercentered GCA studies on resting state fMRI and natural stimulus fMRI datasets in order to elucidate the structural substrates and functional dynamics of GCA. Specifically, we extra...

متن کامل

Fiber-Centered Granger Causality Analysis

Granger causality analysis (GCA) has been well-established in the brain imaging field. However, the structural underpinnings and functional dynamics of Granger causality remain unclear. In this paper, we present fiber-centered GCA studies on resting state fMRI and natural stimulus fMRI datasets in order to elucidate the structural substrates and functional dynamics of GCA. Specifically, we extr...

متن کامل

Granger Causality Analysis in Irregular Time Series

Learning temporal causal structures between time series is one of the key tools for analyzing time series data. In many real-world applications, we are confronted with Irregular Time Series, whose observations are not sampled at equally-spaced time stamps. The irregularity in sampling intervals violates the basic assumptions behind many models for structure learning. In this paper, we propose a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neuroscience

سال: 2015

ISSN: 0270-6474,1529-2401

DOI: 10.1523/jneurosci.4399-14.2015